Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing P Liu, W Yuan, J Fu, Z Jiang, H Hayashi, G Neubig ACM Computing Surveys 55 (9), 1-35, 2023 | 4156 | 2023 |
Bartscore: Evaluating generated text as text generation W Yuan, G Neubig, P Liu Advances in Neural Information Processing Systems 34, 27263-27277, 2021 | 670 | 2021 |
Self-rewarding language models W Yuan, RY Pang, K Cho, S Sukhbaatar, J Xu, J Weston arXiv preprint arXiv:2401.10020, 2024 | 169 | 2024 |
FacTool: Factuality Detection in Generative AI--A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios I Chern, S Chern, S Chen, W Yuan, K Feng, C Zhou, J He, G Neubig, ... arXiv preprint arXiv:2307.13528, 2023 | 100 | 2023 |
Can we automate scientific reviewing? W Yuan, P Liu, G Neubig Journal of Artificial Intelligence Research 75, 171-212, 2022 | 100 | 2022 |
Explainaboard: An explainable leaderboard for nlp P Liu, J Fu, Y Xiao, W Yuan, S Chang, J Dai, Y Liu, Z Ye, ZY Dou, ... arXiv preprint arXiv:2104.06387, 2021 | 61 | 2021 |
Generative judge for evaluating alignment J Li, S Sun, W Yuan, RZ Fan, H Zhao, P Liu arXiv preprint arXiv:2310.05470, 2023 | 49 | 2023 |
Iterative reasoning preference optimization RY Pang, W Yuan, K Cho, H He, S Sukhbaatar, J Weston arXiv preprint arXiv:2404.19733, 2024 | 24 | 2024 |
T5score: Discriminative fine-tuning of generative evaluation metrics Y Qin, W Yuan, G Neubig, P Liu arXiv preprint arXiv:2212.05726, 2022 | 16 | 2022 |
Datalab: A platform for data analysis and intervention Y Xiao, J Fu, W Yuan, V Viswanathan, Z Liu, Y Liu, G Neubig, P Liu arXiv preprint arXiv:2202.12875, 2022 | 12 | 2022 |
Meta-rewarding language models: Self-improving alignment with llm-as-a-meta-judge T Wu, W Yuan, O Golovneva, J Xu, Y Tian, J Jiao, J Weston, S Sukhbaatar arXiv preprint arXiv:2407.19594, 2024 | 10 | 2024 |
System-level natural language feedback W Yuan, K Cho, J Weston arXiv preprint arXiv:2306.13588, 2023 | 7 | 2023 |
Kid-review: Knowledge-guided scientific review generation with oracle pre-training W Yuan, P Liu Proceedings of the AAAI Conference on Artificial Intelligence 36 (10), 11639 …, 2022 | 7 | 2022 |
The critique of critique S Sun, J Li, W Yuan, R Yuan, W Li, P Liu arXiv preprint arXiv:2401.04518, 2024 | 6 | 2024 |
reStructured Pre-training W Yuan, P Liu arXiv preprint arXiv:2206.11147, 2022 | 6 | 2022 |
Self-taught evaluators T Wang, I Kulikov, O Golovneva, P Yu, W Yuan, J Dwivedi-Yu, RY Pang, ... arXiv preprint arXiv:2408.02666, 2024 | 3 | 2024 |
Following length constraints in instructions W Yuan, I Kulikov, P Yu, K Cho, S Sukhbaatar, J Weston, J Xu arXiv preprint arXiv:2406.17744, 2024 | 3 | 2024 |
LLMCRIT: Teaching Large Language Models to Use Criteria W Yuan, P Liu, M Gallé arXiv preprint arXiv:2403.01069, 2024 | | 2024 |