A locally conservative and energy‐stable finite‐element method for the Navier‐Stokes problem on time‐dependent domains TL Horváth, S Rhebergen International Journal for Numerical Methods in Fluids 89 (12), 519-532, 2019 | 18 | 2019 |

On the exact number of solutions of a singular boundary-value problem TL Horváth, PL Simon | 16 | 2009 |

An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier–Stokes equations on moving domains TL Horváth, S Rhebergen Journal of Computational Physics 417, 109577, 2020 | 14 | 2020 |

Analysis of a space-time hybridizable discontinuous Galerkin method for the advection-diffusion problem on time-dependent domains SR Keegan L.A. Kirk, Tamas L. Horvath, Aycil Cesmelioglu SIAM Journal on Numerical Analysis 57 (4), 1677-1696, 2019 | 14 | 2019 |

Discrete maximum principle for interior penalty discontinuous Galerkin methods TL Horváth, ME Mincsovics Central European Journal of Mathematics 11, 664-679, 2013 | 13 | 2013 |

Implicit a posteriori error estimation using patch recovery techniques T Horváth, F Izsák Open Mathematics 10 (1), 55-72, 2012 | 9 | 2012 |

On the differences of the discrete weak and strong maximum principles for elliptic operators ME Mincsovics, TL Horváth International Conference on Large-Scale Scientific Computing, 614-621, 2011 | 9 | 2011 |

Analysis of an exactly mass conserving space-time hybridized discontinuous Galerkin method for the time-dependent Navier–Stokes equations K Kirk, T Horváth, S Rhebergen Mathematics of Computation 92 (340), 525-556, 2023 | 5 | 2023 |

An approximate analytic solution of the inventory balance delay differential equation ÁGT Csík, TL Horváth, P Földesi Acta Technica Jaurinensis 3 (3), 231-256, 2010 | 5 | 2010 |

A conforming sliding mesh technique for an embedded‐hybridized discontinuous Galerkin discretization for fluid‐rigid body interaction TL Horváth, S Rhebergen International Journal for Numerical Methods in Fluids 94 (11), 1784-1809, 2022 | 2 | 2022 |

A locally conservative and energy-stable finite element for the Navier--Stokes problem on time-dependent domains TL Horvath, S Rhebergen arXiv preprint arXiv:1812.00218, 2018 | | 2018 |

ADJOINT BASED GOAL ORIENTED ERROR ESTIMATION FOR ADAPTIVE PETROV-GALERKIN FINITE ELEMENT METHODS Application to convection-diffusion problems T Horváth | | 2014 |

A note on reference solution based hp-adaptive PDE solvers T Horváth Miskolc Mathematical Notes 15 (1), 109-116, 2014 | | 2014 |

ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS T Horváth Hungarian Academy of Sciences, 2013 | | 2013 |

Embedded DG or Hybridizable DG? Why not both? TL Horvath 2023 Spring Central Sectional Meeting, 0 | | |

MAFELAP 2019 abstracts for the mini-symposium Finite Element Methods for Multiphysics Problems P Chidyagwai, K Kirk, T Horváth, A Cesmelioglu, S Rhebergen, R Bürger, ... | | |

A SPACE–TIME HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE NAVIER–STOKES EQUATIONS S Rhebergen, T Horváth | | |