Regularity of local minimizers of the interaction energy via obstacle problems JA Carrillo, MG Delgadino, A Mellet Communications in Mathematical Physics 343, 747-781, 2016 | 104 | 2016 |

On the relation between enhanced dissipation timescales and mixing rates MC Zelati, MG Delgadino, TM Elgindi Communications on Pure and Applied Mathematics 73 (6), 1205-1244, 2020 | 99 | 2020 |

Alexandrov’s theorem revisited MG Delgadino, F Maggi Anal. PDE 12 (6), 1613-1642, 2019 | 54 | 2019 |

Bubbling with *L*^{2}-Almost Constant Mean Curvature and an Alexandrov-Type Theorem for CrystalsMG Delgadino, F Maggi, C Mihaila, R Neumayer Archive for rational mechanics and analysis 230, 1131-1177, 2018 | 49 | 2018 |

On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions MG Delgadino, RS Gvalani, GA Pavliotis Archive for Rational Mechanics and Analysis 241, 91-148, 2021 | 36 | 2021 |

Reverse Hardy–Littlewood–Sobolev inequalities JA Carrillo, MG Delgadino, J Dolbeault, RL Frank, F Hoffmann Journal de Mathématiques Pures et Appliquées 132, 133-165, 2019 | 29* | 2019 |

Uniqueness and non-uniqueness of steady states of aggregation-diffusion equations MG Delgadino, X Yan, Y Yao Communications on Pure and Applied Mathematics, 2019, 2019 | 26 | 2019 |

Existence of ground states for aggregation-diffusion equations JA Carrillo, MG Delgadino, FS Patacchini Analysis and applications 17 (03), 393-423, 2019 | 26 | 2019 |

The Landau equation as a gradient flow JA Carrillo, MG Delgadino, L Desvillettes, JSH Wu arXiv preprint arXiv:2007.08591, 2020 | 19* | 2020 |

Phase transitions, logarithmic Sobolev inequalities, and uniform-in-time propagation of chaos for weakly interacting diffusions MG Delgadino, RS Gvalani, GA Pavliotis, SA Smith Communications in Mathematical Physics 401 (1), 275-323, 2023 | 17 | 2023 |

A λ-convexity based proof for the propagation of chaos for weakly interacting stochastic particles JA Carrillo, MG Delgadino, GA Pavliotis Journal of Functional Analysis 279 (10), 108734, 2020 | 16* | 2020 |

Boltzmann to Landau from the gradient flow perspective JA Carrillo, MG Delgadino, J Wu Nonlinear Analysis 219, 112824, 2022 | 13 | 2022 |

Hölder estimates for fractional parabolic equations with critical divergence free drifts MG Delgadino, S Smith Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35 (3), 577-604, 2018 | 9 | 2018 |

Convergence of a one-dimensional Cahn--Hilliard equation with degenerate mobility MG Delgadino SIAM Journal on Mathematical Analysis 50 (4), 4457-4482, 2018 | 9 | 2018 |

Convergence of a particle method for a regularized spatially homogeneous Landau equation JA Carrillo, MG Delgadino, JSH Wu Mathematical Models and Methods in Applied Sciences 33 (05), 971-1008, 2023 | 8 | 2023 |

Fast Diffusion leads to partial mass concentration in Keller–Segel type stationary solutions JA Carrillo, MG Delgadino, RL Frank, M Lewin Mathematical Models and Methods in Applied Sciences 32 (04), 831-850, 2022 | 5 | 2022 |

On the relationship between the thin film equation and Tanner's law MG Delgadino, A Mellet Communications on Pure and Applied Mathematics 74 (3), 507-543, 2021 | 5 | 2021 |

Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions JA Carrillo, MG Delgadino, RL Frank, M Lewin arXiv preprint arXiv:2012.08586, 2020 | 4 | 2020 |

A Heintze--Karcher inequality with free boundaries and applications to capillarity theory MG Delgadino, D Weser arXiv preprint arXiv:2210.16376, 2022 | 2 | 2022 |

Teoría de Control aplicada a tratamientos de quimioterapia MG Delgadino | 1 | 2011 |