Follow
Oliver De Candido
Title
Cited by
Cited by
Year
Reconsidering Linear Transmit Signal Processing in 1-Bit Quantized Multi-User MISO Systems
O De Candido, H Jedda, A Mezghani, AL Swindlehurst, JA Nossek
IEEE Transactions on Wireless Communications 18 (1), 254-267, 2019
212019
Interpretable feature generation using deep neural networks and its application to lane change detection
O Gallitz, O De Candido, M Botsch, W Utschick
2019 IEEE Intelligent Transportation Systems Conference (ITSC), 3405-3411, 2019
152019
Parameter sharing reinforcement learning for modeling multi-agent driving behavior in roundabout scenarios
F Konstantinidis, M Sackmann, O De Candido, U Hofmann, J Thielecke, ...
2021 IEEE International Intelligent Transportation Systems Conference (ITSC …, 2021
142021
Towards Feature Validation in Time to Lane Change Classification using Deep Neural Networks
O De Candido, M Koller, O Gallitz, R Melz, M Botsch, W Utschick
2020 IEEE 23rd International Conference on Intelligent Transportation …, 2020
102020
An interpretable lane change detector algorithm based on deep autoencoder anomaly detection
O De Candido, M Binder, W Utschick
2021 IEEE Intelligent Vehicles Symposium (IV), 516-523, 2021
92021
Interpretable machine learning structure for an early prediction of lane changes
O Gallitz, O De Candido, M Botsch, R Melz, W Utschick
Artificial Neural Networks and Machine Learning–ICANN 2020: 29th …, 2020
92020
SIMO/MISO MSE-duality for multi-user FBMC with highly frequency selective channels
O De Candido, LG Baltar, A Mezghani, JA Nossek
WSA 2015; 19th International ITG Workshop on Smart Antennas, 1-7, 2015
92015
Downlink precoder and equalizer designs for multi-user MIMO FBMC/OQAM
O De Candido, SA Cheema, LG Baltar, M Haardt, JA Nossek
WSA 2016; 20th International ITG Workshop on Smart Antennas, 1-8, 2016
72016
Interpretable classifiers based on time-series motifs for lane change prediction
K Klein, O De Candido, W Utschick
IEEE Transactions on Intelligent Vehicles 8 (7), 3954-3961, 2023
42023
Encouraging Validatable Features in Machine Learning-Based Highly Automated Driving Functions
O De Candido, M Koller, W Utschick
IEEE Transactions on Intelligent Vehicles 8 (2), 1837-1851, 2022
32022
An analysis of distributional shifts in automated driving functions in highway scenarios
O De Candido, X Li, W Utschick
2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), 1-7, 2022
22022
Are traditional signal processing techniques rate maximizing in quantized SU-MISO systems?
O De Candido, H Jedda, A Mezghani, AL Swindlehurst, JA Nossek
GLOBECOM 2017-2017 IEEE Global Communications Conference, 1-6, 2017
22017
DFE/THP duality for FBMC with highly frequency selective channels
H Jedda, LG Baltar, O De Candido, A Mezghani, JA Nossek
2015 23rd European Signal Processing Conference (EUSIPCO), 2127-2131, 2015
22015
Detecting an Offset-Adjusted Similarity Score based on Duchenne Smiles
M Henneberg, C Eghtebas, O De Candido, K Kunze, JA Ward
Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing …, 2023
12023
Classification and uncertainty quantification of corrupted data using supervised autoencoders
P Joppich, S Dorn, O De Candido, J Knollmüller, W Utschick
Physical Sciences Forum 5 (1), 12, 2022
12022
Interpretable early prediction of lane changes using a constrained neural network architecture
O Gallitz, O De Candido, M Botsch, W Utschick
2021 IEEE International Intelligent Transportation Systems Conference (ITSC …, 2021
12021
Learning to Detect Adversarial Examples Based on Class Scores
T Uelwer, F Michels, O De Candido
KI 2021: Advances in Artificial Intelligence: 44th German Conference on AI …, 2021
12021
Evaluating AI-Based Components in Autonomous Railway Systems: A Methodology
J Roßbach, O De Candido, A Hammam, M Leuschel
German Conference on Artificial Intelligence (Künstliche Intelligenz), 190-203, 2024
2024
Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations
A Hammam, BK Sreedhar, N Kawa, T Patzelt, O De Candido
arXiv preprint arXiv:2408.17311, 2024
2024
On Learning the Tail Quantiles of Driving Behavior Distributions via Quantile Regression and Flows
JY Tee, O De Candido, W Utschick, P Geiger
2023 IEEE 26th International Conference on Intelligent Transportation …, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20