Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1490 | 2023 |
Decision transformer: Reinforcement learning via sequence modeling L Chen, K Lu, A Rajeswaran, K Lee, A Grover, M Laskin, P Abbeel, ... Advances in neural information processing systems 34, 15084-15097, 2021 | 1461 | 2021 |
CURL: Contrastive Unsupervised Representations for Reinforcement Learning M Laskin, A Srinivas, P Abbeel Proceedings of the 37th International Conference on Machine Learning, Vienna …, 2020 | 1114 | 2020 |
Reinforcement learning with augmented data M Laskin, K Lee, A Stooke, L Pinto, P Abbeel, A Srinivas Advances in neural information processing systems 33, 19884-19895, 2020 | 711 | 2020 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ... arXiv preprint arXiv:2403.05530, 2024 | 358 | 2024 |
Decoupling representation learning from reinforcement learning A Stooke, K Lee, P Abbeel, M Laskin International conference on machine learning, 9870-9879, 2021 | 346 | 2021 |
Sunrise: A simple unified framework for ensemble learning in deep reinforcement learning K Lee, M Laskin, A Srinivas, P Abbeel International Conference on Machine Learning, 6131-6141, 2021 | 243 | 2021 |
Fractional quantum Hall effect in a curved space: gravitational anomaly and electromagnetic response T Can, M Laskin, P Wiegmann Physical review letters 113 (4), 046803, 2014 | 157 | 2014 |
Urlb: Unsupervised reinforcement learning benchmark M Laskin, D Yarats, H Liu, K Lee, A Zhan, K Lu, C Cang, L Pinto, P Abbeel arXiv preprint arXiv:2110.15191, 2021 | 128 | 2021 |
Geometry of quantum Hall states: Gravitational anomaly and transport coefficients T Can, M Laskin, PB Wiegmann Annals of Physics 362, 752-794, 2015 | 107 | 2015 |
A framework for efficient robotic manipulation A Zhan, R Zhao, L Pinto, P Abbeel, M Laskin Deep RL Workshop NeurIPS 2021, 2021 | 97 | 2021 |
Don't change the algorithm, change the data: Exploratory data for offline reinforcement learning D Yarats, D Brandfonbrener, H Liu, M Laskin, P Abbeel, A Lazaric, L Pinto arXiv preprint arXiv:2201.13425, 2022 | 87 | 2022 |
In-context reinforcement learning with algorithm distillation M Laskin, L Wang, J Oh, E Parisotto, S Spencer, R Steigerwald, ... arXiv preprint arXiv:2210.14215, 2022 | 85 | 2022 |
Cic: Contrastive intrinsic control for unsupervised skill discovery M Laskin, H Liu, XB Peng, D Yarats, A Rajeswaran, P Abbeel arXiv preprint arXiv:2202.00161, 2022 | 72* | 2022 |
Emergent conformal symmetry and geometric transport properties of quantum Hall states on singular surfaces T Can, YH Chiu, M Laskin, P Wiegmann Physical review letters 117 (26), 266803, 2016 | 57 | 2016 |
Sparse graphical memory for robust planning S Emmons, A Jain, M Laskin, T Kurutach, P Abbeel, D Pathak Advances in neural information processing systems 33, 5251-5262, 2020 | 55 | 2020 |
Collective field theory for quantum Hall states M Laskin, T Can, P Wiegmann Physical Review B 92 (23), 235141, 2015 | 51 | 2015 |
Hierarchical few-shot imitation with skill transition models K Hakhamaneshi, R Zhao, A Zhan, P Abbeel, M Laskin arXiv preprint arXiv:2107.08981, 2021 | 39 | 2021 |
Skill preferences: Learning to extract and execute robotic skills from human feedback X Wang, K Lee, K Hakhamaneshi, P Abbeel, M Laskin Conference on Robot Learning, 1259-1268, 2022 | 36 | 2022 |
Parallel training of deep networks with local updates M Laskin, L Metz, S Nabarro, M Saroufim, B Noune, C Luschi, ... arXiv preprint arXiv:2012.03837, 2020 | 26 | 2020 |