Follow
Kedar Tatwawadi
Kedar Tatwawadi
Verified email at stanford.edu - Homepage
Title
Cited by
Cited by
Year
Neural joint source-channel coding
K Choi, K Tatwawadi, A Grover, T Weissman, S Ermon
International Conference on Machine Learning, 1182-1192, 2019
1242019
Elf-vc: Efficient learned flexible-rate video coding
O Rippel, AG Anderson, K Tatwawadi, S Nair, C Lytle, L Bourdev
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
1092021
Robust text-to-sql generation with execution-guided decoding
C Wang, K Tatwawadi, M Brockschmidt, PS Huang, Y Mao, O Polozov, ...
arXiv preprint arXiv:1807.03100, 2018
1082018
Deepzip: Lossless data compression using recurrent neural networks
M Goyal, K Tatwawadi, S Chandak, I Ochoa
arXiv preprint arXiv:1811.08162, 2018
972018
SPRING: a next-generation compressor for FASTQ data
S Chandak, K Tatwawadi, I Ochoa, M Hernaez, T Weissman
Bioinformatics 35 (15), 2674-2676, 2019
852019
Improved read/write cost tradeoff in DNA-based data storage using LDPC codes
S Chandak, K Tatwawadi, B Lau, J Mardia, M Kubit, J Neu, P Griffin, ...
2019 57th Annual Allerton Conference on Communication, Control, and …, 2019
842019
Incsql: Training incremental text-to-sql parsers with non-deterministic oracles
T Shi, K Tatwawadi, K Chakrabarti, Y Mao, O Polozov, W Chen
arXiv preprint arXiv:1809.05054, 2018
692018
Overcoming high nanopore basecaller error rates for DNA storage via basecaller-decoder integration and convolutional codes
S Chandak, J Neu, K Tatwawadi, J Mardia, B Lau, M Kubit, R Hulett, ...
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
582020
DZip: Improved general-purpose loss less compression based on novel neural network modeling
M Goyal, K Tatwawadi, S Chandak, I Ochoa
2021 data compression conference (DCC), 153-162, 2021
492021
Compression of genomic sequencing reads via hash-based reordering: algorithm and analysis
S Chandak, K Tatwawadi, T Weissman
Bioinformatics 34 (4), 558-567, 2018
492018
LFZip: Lossy compression of multivariate floating-point time series data via improved prediction
S Chandak, K Tatwawadi, C Wen, L Wang, JA Ojea, T Weissman
2020 Data Compression Conference (DCC), 342-351, 2020
382020
NECST: neural joint source-channel coding
K Choi, K Tatwawadi, T Weissman, S Ermon
312018
GTRAC: fast retrieval from compressed collections of genomic variants
K Tatwawadi, M Hernaez, I Ochoa, T Weissman
Bioinformatics 32 (17), i479-i486, 2016
212016
On universal compression with constant random access
K Tatwawadi, SS Bidokhti, T Weissman
2018 IEEE International Symposium on Information Theory (ISIT), 891-895, 2018
182018
Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing
B Lau, S Chandak, S Roy, K Tatwawadi, M Wootters, T Weissman, HP Ji
Scientific Reports 13 (1), 8514, 2023
122023
Deepzip: Lossless compression using recurrent networks
K Tatwawadi
URL https://web. stanford. edu/class/cs224n/reports/2761006. pdf, 2018
122018
Minimax redundancy for Markov chains with large state space
K Tatwawadi, J Jiao, T Weissman
2018 IEEE International Symposium on Information Theory (ISIT), 216-220, 2018
92018
Impact of lossy compression of nanopore raw signal data on basecalling and consensus accuracy
S Chandak, K Tatwawadi, S Sridhar, T Weissman
Bioinformatics 36 (22-23), 5313-5321, 2020
82020
Reducing latency and bandwidth for video streaming using keypoint extraction and digital puppetry
R Prabhakar, S Chandak, C Chiu, R Liang, H Nguyen, K Tatwawadi, ...
arXiv preprint arXiv:2011.03800, 2020
72020
Humans are still the best lossy image compressors
A Bhown, S Mukherjee, S Yang, S Chandak, I Fischer-Hwang, ...
arXiv preprint arXiv:1810.11137, 2018
7*2018
The system can't perform the operation now. Try again later.
Articles 1–20