The diversity–innovation paradox in science B Hofstra, VV Kulkarni, S Munoz-Najar Galvez, B He, D Jurafsky, ... Proceedings of the National Academy of Sciences 117 (17), 9284-9291, 2020 | 638 | 2020 |
Video-based AI for beat-to-beat assessment of cardiac function D Ouyang, B He, A Ghorbani, N Yuan, J Ebinger, CP Langlotz, ... Nature 580 (7802), 252-256, 2020 | 436* | 2020 |
Deep learning interpretation of echocardiograms A Ghorbani, D Ouyang, A Abid, B He, JH Chen, RA Harrington, DH Liang, ... NPJ digital medicine 3 (1), 10, 2020 | 282 | 2020 |
Integrating spatial gene expression and breast tumour morphology via deep learning B He, L Bergenstrĺhle, L Stenbeck, A Abid, A Andersson, Ĺ Borg, ... Nature biomedical engineering 4 (8), 827-834, 2020 | 186 | 2020 |
Learning the structure of generative models without labeled data SH Bach, B He, A Ratner, C Ré International Conference on Machine Learning (ICML), 2017 | 156 | 2017 |
Accelerated stochastic power iteration P Xu, B He, C De Sa, I Mitliagkas, C Re International Conference on Artificial Intelligence and Statistics, 58-67, 2018 | 74 | 2018 |
Super-resolved spatial transcriptomics by deep data fusion L Bergenstrĺhle, B He, J Bergenstrĺhle, X Abalo, R Mirzazadeh, K Thrane, ... Nature biotechnology 40 (4), 476-479, 2022 | 66 | 2022 |
Inferring generative model structure with static analysis P Varma, BD He, P Bajaj, N Khandwala, I Banerjee, D Rubin, C Ré Advances in neural information processing systems 30, 2017 | 55 | 2017 |
High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning G Duffy, PP Cheng, N Yuan, B He, AC Kwan, MJ Shun-Shin, ... JAMA cardiology 7 (4), 386-395, 2022 | 48 | 2022 |
Socratic learning: Augmenting generative models to incorporate latent subsets in training data P Varma, B He, D Iter, P Xu, R Yu, C De Sa, C Ré arXiv preprint arXiv:1610.08123, 2016 | 38* | 2016 |
Scan order in Gibbs sampling: Models in which it matters and bounds on how much BD He, CM De Sa, I Mitliagkas, C Ré Advances in neural information processing systems 29, 2016 | 34 | 2016 |
Deep learning evaluation of biomarkers from echocardiogram videos JW Hughes, N Yuan, B He, J Ouyang, J Ebinger, P Botting, J Lee, ... EBioMedicine 73, 2021 | 30* | 2021 |
How to evaluate deep learning for cancer diagnostics–factors and recommendations R Daneshjou, B He, D Ouyang, JY Zou Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1875 (2), 188515, 2021 | 24 | 2021 |
Dynamic analysis of naive adaptive brain-machine interfaces KC Kowalski, BD He, L Srinivasan Neural Computation 25 (9), 2373-2420, 2013 | 23 | 2013 |
Blinded, randomized trial of sonographer versus AI cardiac function assessment B He, AC Kwan, JH Cho, N Yuan, C Pollick, T Shiota, J Ebinger, NA Bello, ... Nature 616 (7957), 520-524, 2023 | 20 | 2023 |
A simple optimal binary representation of mosaic floorplans and Baxter permutations BD He Theoretical Computer Science 532, 40-50, 2014 | 19* | 2014 |
Systematic quantification of sources of variation in ejection fraction calculation using deep learning N Yuan, I Jain, N Rattehalli, B He, C Pollick, D Liang, P Heidenreich, ... Cardiovascular Imaging 14 (11), 2260-2262, 2021 | 11 | 2021 |
Signal quality of endovascular electroencephalography BD He, M Ebrahimi, L Palafox, L Srinivasan Journal of Neural Engineering 13 (1), 016016, 2016 | 11 | 2016 |
AI-enabled in silico immunohistochemical characterization for Alzheimer's disease B He, S Bukhari, E Fox, A Abid, J Shen, C Kawas, M Corrada, T Montine, ... Cell Reports Methods 2 (4), 2022 | 6 | 2022 |
Interpretable deep learning prediction of 3d assessment of cardiac function G Duffy, I Jain, B He, D Ouyang Pacific Symposium on BiocomputIng 2022, 231-241, 2021 | 6 | 2021 |