Point-nerf: Point-based neural radiance fields Q Xu, Z Xu, J Philip, S Bi, Z Shu, K Sunkavalli, U Neumann Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 573 | 2022 |
Neural face editing with intrinsic image disentangling Z Shu, E Yumer, S Hadap, K Sunkavalli, E Shechtman, D Samaras Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 330 | 2017 |
Deforming Autoencoders: Unsupervised Disentangling of Shape and Appearance Z Shu, M Sahasrabudhe, A Guler, D Samaras, N Paragios, I Kokkinos European Conference on Computer Vision (ECCV), 2018., 2018 | 230 | 2018 |
Docunet: Document image unwarping via a stacked u-net K Ma, Z Shu, X Bai, J Wang, D Samaras Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 156 | 2018 |
Rignerf: Fully controllable neural 3d portraits SR Athar, Z Xu, K Sunkavalli, E Shechtman, Z Shu Proceedings of the IEEE/CVF conference on Computer Vision and Pattern …, 2022 | 123 | 2022 |
Pose with style: Detail-preserving pose-guided image synthesis with conditional stylegan B Albahar, J Lu, J Yang, Z Shu, E Shechtman, JB Huang ACM Transactions on Graphics (TOG) 40 (6), 1-11, 2021 | 117 | 2021 |
Portrait lighting transfer using a mass transport approach Z Shu, S Hadap, E Shechtman, K Sunkavalli, S Paris, D Samaras ACM Transactions on Graphics (TOG) 36 (4), 1, 2017 | 88 | 2017 |
Dewarpnet: Single-image document unwarping with stacked 3d and 2d regression networks S Das, K Ma, Z Shu, D Samaras, R Shilkrot Proceedings of the IEEE/CVF international conference on computer vision, 131-140, 2019 | 84 | 2019 |
Content-aware gan compression Y Liu, Z Shu, Y Li, Z Lin, F Perazzi, SY Kung Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 66 | 2021 |
Palettenerf: Palette-based appearance editing of neural radiance fields Z Kuang, F Luan, S Bi, Z Shu, G Wetzstein, K Sunkavalli Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 57 | 2023 |
Lifting autoencoders: Unsupervised learning of a fully-disentangled 3d morphable model using deep non-rigid structure from motion M Sahasrabudhe, Z Shu, E Bartrum, R Alp Guler, D Samaras, I Kokkinos Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 43 | 2019 |
Flame-in-nerf: Neural control of radiance fields for free view face animation SR Athar, Z Shu, D Samaras 2023 IEEE 17th International Conference on Automatic Face and Gesture …, 2023 | 35 | 2023 |
Single-image full-body human relighting M Lagunas, X Sun, J Yang, R Villegas, J Zhang, Z Shu, B Masia, ... arXiv preprint arXiv:2107.07259, 2021 | 33 | 2021 |
Learning from documents in the wild to improve document unwarping K Ma, S Das, Z Shu, D Samaras ACM SIGGRAPH 2022 Conference Proceedings, 1-9, 2022 | 30 | 2022 |
3d-fm gan: Towards 3d-controllable face manipulation Y Liu, Z Shu, Y Li, Z Lin, R Zhang, SY Kung European Conference on Computer Vision, 107-125, 2022 | 28 | 2022 |
An adversarial neuro-tensorial approach for learning disentangled representations M Wang, Z Shu, S Cheng, Y Panagakis, D Samaras, S Zafeiriou International Journal of Computer Vision 127, 743-762, 2019 | 27 | 2019 |
Eyeopener: Editing eyes in the wild Z Shu, E Shechtman, D Samaras, S Hadap ACM Transactions on Graphics (TOG) 36 (1), 1-13, 2016 | 23 | 2016 |
Action detection with improved dense trajectories and sliding window Z Shu, K Yun, D Samaras Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and …, 2015 | 22 | 2015 |
Neural face editing with intrinsic image disentangling S Hadap, E Shechtman, Z Shu, K Sunkavalli, M Yumer US Patent 10,565,758, 2020 | 19 | 2020 |
Improving heterogeneous face recognition with conditional adversarial networks W Zhang, Z Shu, D Samaras, L Chen arXiv preprint arXiv:1709.02848, 2017 | 17 | 2017 |