Package ‘xgboost’ T Chen, T He, M Benesty, V Khotilovich R version 90 (1-66), 40, 2019 | 4000* | 2019 |
Resnest: Split-attention networks H Zhang, C Wu, Z Zhang, Y Zhu, H Lin, Z Zhang, Y Sun, T He, J Mueller, ... Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 1924 | 2022 |
Bag of Tricks for Image Classification with Convolutional Neural Networks T He, Z Zhang, H Zhang, Z Zhang, J Xie, M Li arXiv preprint arXiv:1812.01187, 2018 | 1811 | 2018 |
Deep graph library: A graph-centric, highly-performant package for graph neural networks M Wang, D Zheng, Z Ye, Q Gan, M Li, X Song, J Zhou, C Ma, L Yu, Y Gai, ... arXiv preprint arXiv:1909.01315, 2019 | 1258 | 2019 |
SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines T He, M Heidemeyer, F Ban, A Cherkasov, M Ester Journal of cheminformatics 9, 1-14, 2017 | 395* | 2017 |
Higgs boson discovery with boosted trees T Chen, T He JMLR: Workshop and Conference Proceedings 42, 2015 | 235 | 2015 |
Bag of freebies for training object detection neural networks Z Zhang, T He, H Zhang, Z Zhang, J Xie, M Li arXiv preprint arXiv:1902.04103, 2019 | 228 | 2019 |
Gluoncv and gluonnlp: Deep learning in computer vision and natural language processing J Guo, H He, T He, L Lausen, M Li, H Lin, X Shi, C Wang, J Xie, S Zha, ... Journal of Machine Learning Research 21 (23), 1-7, 2020 | 225 | 2020 |
Bridging the gap to real-world object-centric learning M Seitzer, M Horn, A Zadaianchuk, D Zietlow, T Xiao, CJ Simon-Gabriel, ... | 97 | 2023 |
Progressive coordinate transforms for monocular 3d object detection L Wang, L Zhang, Y Zhu, Z Zhang, T He, M Li, X Xue Advances in Neural Information Processing Systems 34, 13364-13377, 2021 | 79 | 2021 |
Improving semantic segmentation via efficient self-training Y Zhu, Z Zhang, C Wu, Z Zhang, T He, H Zhang, R Manmatha, M Li, ... IEEE transactions on pattern analysis and machine intelligence 46 (3), 1589-1602, 2021 | 58 | 2021 |
LayoutDiffuse: Adapting Foundational Diffusion Models for Layout-to-Image Generation J Cheng, X Liang, X Shi, T He, T Xiao, M Li arXiv preprint arXiv:2302.08908, 2023 | 41 | 2023 |
Grin: Generative relation and intention network for multi-agent trajectory prediction L Li, J Yao, L Wenliang, T He, T Xiao, J Yan, D Wipf, Z Zhang Advances in Neural Information Processing Systems 34, 27107-27118, 2021 | 41 | 2021 |
Learning hierarchical graph neural networks for image clustering Y Xing, T He, T Xiao, Y Wang, Y Xiong, W Xia, D Wipf, Z Zhang, S Soatto Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 38 | 2021 |
Hallucination of multimodal large language models: A survey Z Bai, P Wang, T Xiao, T He, Z Han, Z Zhang, MZ Shou arXiv preprint arXiv:2404.18930, 2024 | 33 | 2024 |
Dynamic mini-batch sgd for elastic distributed training: Learning in the limbo of resources H Lin, H Zhang, Y Ma, T He, Z Zhang, S Zha, M Li arXiv preprint arXiv:1904.12043, 2019 | 21 | 2019 |
Convolution meets lora: Parameter efficient finetuning for segment anything model Z Zhong, Z Tang, T He, H Fang, C Yuan arXiv preprint arXiv:2401.17868, 2024 | 16 | 2024 |
Learning manifold dimensions with conditional variational autoencoders Y Zheng, T He, Y Qiu, DP Wipf Advances in Neural Information Processing Systems 35, 34709-34721, 2022 | 14 | 2022 |
Coarse-to-fine amodal segmentation with shape prior J Gao, X Qian, Y Wang, T Xiao, T He, Z Zhang, Y Fu Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 11 | 2023 |
Self-supervised amodal video object segmentation J Yao, Y Hong, C Wang, T Xiao, T He, F Locatello, DP Wipf, Y Fu, Z Zhang Advances in Neural Information Processing Systems 35, 6278-6291, 2022 | 8 | 2022 |