Competition-level code generation with alphacode Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ... Science 378 (6624), 1092-1097, 2022 | 998 | 2022 |
A generalist agent S Reed, K Zolna, E Parisotto, SG Colmenarejo, A Novikov, G Barth-Maron, ... arXiv preprint arXiv:2205.06175, 2022 | 926 | 2022 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ... arXiv preprint arXiv:2403.05530, 2024 | 671* | 2024 |
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ... Science 378 (6624), 1092-1097, 2022 | 302 | 2022 |
Mastering the game of Stratego with model-free multiagent reinforcement learning J Perolat, B De Vylder, D Hennes, E Tarassov, F Strub, V de Boer, ... Science 378 (6623), 990-996, 2022 | 219 | 2022 |
Gemma 2: Improving open language models at a practical size G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ... arXiv preprint arXiv:2408.00118, 2024 | 187 | 2024 |
Life-long disentangled representation learning with cross-domain latent homologies A Achille, T Eccles, L Matthey, C Burgess, N Watters, A Lerchner, ... Advances in Neural Information Processing Systems 31, 2018 | 140 | 2018 |
An investigation of model-free planning A Guez, M Mirza, K Gregor, R Kabra, S Racaničre, T Weber, D Raposo, ... International Conference on Machine Learning, 2464-2473, 2019 | 99 | 2019 |
Biases for emergent communication in multi-agent reinforcement learning T Eccles, Y Bachrach, G Lever, A Lazaridou, T Graepel Advances in neural information processing systems 32, 2019 | 87 | 2019 |
Learning to play no-press diplomacy with best response policy iteration T Anthony, T Eccles, A Tacchetti, J Kramár, I Gemp, T Hudson, N Porcel, ... Advances in Neural Information Processing Systems 33, 17987-18003, 2020 | 57 | 2020 |
Learning reciprocity in complex sequential social dilemmas T Eccles, E Hughes, J Kramár, S Wheelwright, JZ Leibo arXiv preprint arXiv:1903.08082, 2019 | 51 | 2019 |
Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy J Kramár, T Eccles, I Gemp, A Tacchetti, KR McKee, M Malinowski, ... Nature Communications 13 (1), 7214, 2022 | 50 | 2022 |
Union-closed families of sets I Balla, B Bollobás, T Eccles Journal of Combinatorial Theory, Series A 120 (3), 531-544, 2013 | 48 | 2013 |
A generalist agent. arXiv 2022 S Reed, K Zolna, E Parisotto, SG Colmenarejo, A Novikov, G Barth-Maron, ... arXiv preprint arXiv:2205.06175, 1-40, 0 | 42 | |
Graphs of large linear size are antimagic T Eccles Journal of graph theory 81 (3), 236-261, 2016 | 40 | 2016 |
Reinforcement learning agents acquire flocking and symbiotic behaviour in simulated ecosystems P Sunehag, G Lever, S Liu, J Merel, N Heess, JZ Leibo, E Hughes, ... Artificial life conference proceedings, 103-110, 2019 | 33 | 2019 |
C. d. M. d’Autume, I. Babuschkin, X. Chen, P Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ... S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, DJ Mankowitz, ES …, 2022 | 25 | 2022 |
Learning to resolve alliance dilemmas in many-player zero-sum games E Hughes, TW Anthony, T Eccles, JZ Leibo, D Balduzzi, Y Bachrach arXiv preprint arXiv:2003.00799, 2020 | 25 | 2020 |
An investigation of model-free planning: boxoban levels A Guez, M Mirza, K Gregor, R Kabra, S Racaniere, T Weber, D Raposo, ... | 20 | 2018 |
Sample-based approximation of Nash in large many-player games via gradient descent I Gemp, R Savani, M Lanctot, Y Bachrach, T Anthony, R Everett, ... arXiv preprint arXiv:2106.01285, 2021 | 19 | 2021 |